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A B S T R A C T

Objectively and accurately evaluating underwater images generated by different enhancement algorithms is
an essential issue, which however is still largely under-explored. In this paper, we present a novel rank
learning guided no-reference quality assessment method to evaluate different underwater image enhancement
(UIE) algorithms. It is also the first work that utilizes deep learning approaches to address this problem. Our
approach, termed Twice Mixing, is motivated by the observation that a mid-quality image can be generated
by mixing a high-quality image and its low-quality version. Twice Mixing is trained based on an elaborately
formulated self-supervision mechanism. Specifically, before each iteration, we randomly generate two mixing
ratios which will be utilized for both generating virtual images and guiding the network training. In the
test phase, a single branch of the network is extracted to predict the quality rankings of different UIE outputs.
Additionally, to train our network, we construct a new dataset that contains over 2200 raw underwater images
and their high/low-quality versions. Twice Mixing is evaluated on both synthetic and real-world datasets.
Experimental results show that the proposed approach outperforms the previous methods significantly.
. Introduction

As an important carrier of oceanic information, underwater im-
ges play a critical role in ocean developments and explorations. For
xample, autonomous underwater vehicles and surveillance systems
re usually equipped with an optical sensor for visual inspections
nd environmental sensing [1]. Unfortunately, the captured images in
nderwater scenes are commonly degraded due to the wavelength-
ependent light absorption and scattering. To achieve the requirement
f high-quality underwater image generation, various underwater im-
ge enhancement (UIE) algorithms have been developed over the last
ew years [2].

Generally, the existing UIE algorithms can be organized into three
ategories: model-free, prior-based and data-driven methods. Model-
ree approaches, such as contrast limited adaptive histogram equaliza-
ion (CLAHE) [3], Retinex [4], white balance [5], and Fusion [6,7],
irectly adjust pixel values without modeling the underwater degrada-
ion process. In contrast, prior-based methods restore degraded images
ased on elaborated physical imaging models and various prior knowl-
dge. Dark Channel Prior (DCP) [8] is one of the most adopted prior
odes in UIE [9–11]. Besides, another line of prior-based methods is

o utilize the optical properties of underwater imaging. For example,
arlevaris-Bianco et al. [12] used the difference of light attenuation to
alculate the transmission map with the prior knowledge that red lights

∗ Corresponding author.
E-mail address: dxh@xmu.edu.cn (X. Ding).

attenuate faster than the green and blue in the water environment.
Recently, deep learning has shown remarkable success in various low-
level and high-level vision tasks. Based on the powerful representations
learned from a large quantity of annotated data, many researches on
data-driven UIE algorithms have been presented [13,14].

Although the existing UIE methods achieve impressive results, it is
still unclear whether an underwater image with specific distortions can
be successfully enhanced. As shown in Fig. 1, different UIE methods
have their advantages and disadvantages in color correction and visi-
bility improvement. Due to the lack of effective objective underwater
image enhancement quality assessment (UIE-IQA) metrics, existing UIE
methods rely on subjective comparisons to demonstrate the superiority
of enhancement [2,16]. However, the subjective comparison takes a lot
of time and effort. Even worse, subjective quality assessment is difficult
to be integrated into online optimization systems to obtain real-time
feedback on image quality. To ensure the enhanced images are perfect
and satisfactory for real applications, objective UIE-IQA metrics should
be performed, which have a direct application in optimizing the UIE
operator based on the supervision of quality.

UIE-IQA belongs to blind/no-reference IQA (NR-IQA) [17] because
the reference image is unavailable in underwater scenes. However,
directly using existing NR-IQA methods for UIE-IQA is inappropriate
and difficult to achieve satisfactory results. This is because the quality
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Fig. 1. Examples of enhanced underwater images. (a) Raw images, (b) CLAHE [3], (c) Fusion [6], (d) DCP [8], (e) Histogram-prior [15], and (f) Water-Net [16].
egradation (e.g., color shift, contrast distortions, and artifacts) during
he UIE is quite different from those in traditional NR-IQA metrics
e.g., noise, blur, and compression) [18–20]. Previous works attempt
o solve the UIE-IQA problem by empirically fusing different quality
omponents [21,22]. Unfortunately, since the distortions of enhanced
nderwater images are too complex and affected by many factors, it is
ifficult to find a universal method by using only hand-crafted features
ith a shallow pooling module.

In this paper, we aim at designing learning-based approaches for
IE-IQA. Generally, learning-based quality predictors depend on
mounts of annotated training data. However, collecting quality an-
otations of enhanced underwater images for training a deep neural
etwork is quite difficult. Because human observers cannot give precise
ubjective judgments for such a large quantity of examples. Besides, the
egradation of enhanced underwater images is affected by various fac-
ors, which further increases the difficulty of subjective rating. To cope
ith these obstacles, we present a rank learning framework based on
n elaborately designed self-supervision mechanism. The key idea is to
andomly generate two mixing ratios before each iteration. The mixing
atios are utilized for both generating training data and supervising
he training process. Concretely, before each iteration, we first mix
he raw underwater image with its enhanced version twice following
he random mixing ratios. Then, we adopt the mixed instances and
heir corresponding mixing ratios to train a Siamese Network [23,24].
ur approach is inspired by the mixup algorithm [25], which linearly

nterpolates between two random input data and applies the mixed
ata with the corresponding soft label for training. The difference
s that we simultaneously produce two mixed examples and train a
iamese Network to learn their rankings. This is because the perceptual
uality of images non-linearly descends as the degradation increase.
herefore, we propose to apply the relative quality rather than the
bsolute score to train the network. Note that, the only subjective work
or training our model is to collect raw underwater images, and their
igh-quality and low-quality enhanced versions. We do not use any
ubjective quality scores in the training phase. In summary, the main
ontributions of this paper are as follows:

(1) We present a rank learning framework for UIE-IQA based on an
elaborately designed self-supervision mechanism.1 It is also the
first time that using deep learning approaches to address the
UIE-IQA problem. The core idea of our method is to randomly
generate two mixing ratios, which are utilized for both generating
input data and guiding the network training.

(2) We construct a dataset with over 2200 raw underwater images
and their high-quality and low-quality enhanced versions. Note
that, our method is independent of subjective scores. The only
subjective work is to collect high-quality and low-quality en-
hanced versions, which are easier to implement.

1 The dataset and code are available at: https://github.com/zhenqifu/
wice-Mixing.
2

(3) Extensive experiments on both synthetic and real-world UIE-
IQA databases demonstrate that our method outperforms other
methods significantly, and is more suitable for real applications.

The rest of this paper is organized as follows. In Section 2, we
briefly review the literature related to our work. In Section 3, we detail
the proposed approach. We present the experimental results and the
discussions in Section 4. Finally, the conclusions are drawn in Section 5.

2. Related work

In this section, we review the previous works related to this paper.
We will first summarize the existing UIE methods, then we introduce
the previous works of UIE-IQA.

2.1. Underwater image enhancement

Scattering and absorption effects caused by the water medium
degrade the visual quality of underwater images and limit their appli-
cability in vision systems. To improve the image quality, a lot of UIE
algorithms have been developed. As mentioned above, those methods
can be roughly classified into the following three categories.

The first category is model-free methods, which focus on enhancing
specific distortions via directly adjusting pixel values, without explic-
itly modeling the degradation process. Traditional contrast limited
adaptive histogram equalization (CLAHE) [3], histogram equalization
(HE) [26], Retinex [4] and white balance (WB) [5] are several repre-
sentative model-free algorithms. In literature [27], Iqbal et al. directly
adjusted the dynamic range of pixels to improve the saturation and
contrast. Ancuti et al. [6] presented a fusion-based UIE method, in
which a multi-scale fusion strategy is applied to fuse color corrected
and contrast-enhanced images. An improvement version of [6] is pre-
sented in [7], which adopts a white balancing technique and a novel
fusing strategy to further promote the enhancement performance. Fu
et al. [4] proposed a retinex-based UIE approach, which contains three
steps, i.e., color correction, layer decomposition, and post-processing.
Ghani et al. [28] devised a Rayleigh distribution guided UIE algo-
rithm that can reduce the over/under-enhancement phenomena. Fu
et al. [29] presented a two-step approach that addressed the absorption
and scattering problems by color correction and contrast enhancement,
respectively. Gao et al. [30] enhanced underwater images based on the
features of imaging environments and the adaptive mechanisms of the
fish retina.

The second category is prior-based methods, which adopt prior
knowledge and physical imaging models to improve the image quality.
Dark Channel Prior (DCP) [8] is one of the most used prior modes in
this category methods. For example, Chiang et al. [9] adopted DCP
to remove haze and employed a wavelength-dependent compensation
algorithm to correct colors. Drews et al. [10] used a modified DCP
algorithm to enhance underwater images, showing better transmission
map estimation than the original DCP. Peng et al. [31] presented a Gen-

eralized Dark Channel Prior (GDCP) method by integrating an adaptive

https://github.com/zhenqifu/Twice-Mixing
https://github.com/zhenqifu/Twice-Mixing
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color correction algorithm. Song et al. [32] estimated the transmission
map of the red channel by a new Underwater Dark Channel Prior
(NUDCP). Apart from DCP, another line of prior-based algorithms is
to apply the optical properties of underwater imaging. For instance,
Galdran et al. [33] recovered the colors associated with short wave-
lengths to enhance the image contrast. Zhao et al. [34] computed
the inherent optical properties of water medium from background
colors. Li et al. [15] utilized the histogram distribution prior and min-
imum information loss principle to enhance underwater images. Peng
et al. [35] first estimated the scene depth based on light absorption
and image blurriness, then the depth information is employed for UIE.
Berman et al. [36] converted the issue of UIE to single image dehaz-
ing by predicting two additional global parameters. Wang et al. [37]
restored underwater images by combining the characteristics of light
propagation and adaptive attenuation-curve prior.

The third category is data-driven based methods. Different from
model-free and prior-based algorithms that apply hand-crafted fea-
tures for UIE, data-driven approaches utilize the powerful modeling
capabilities of deep learning to automatically extract representations
and learn a nonlinear mapping from raw underwater images to the
corresponding clean versions. Li et al. [13] developed a deep learning
based UIE method named WaterGAN. First, the authors simulated real-
istic underwater images in an unsupervised pipeline. Then, a two-stage
network was trained end-to-end with the synthetic data. Li et al. [14]
proposed a weakly supervised UIE method using a cycle-consistent
adversarial network [38], which relaxes the need for paired training
data. Hou et al. [39] jointly learned restoration information on trans-
mission and image domains. Uplavikar et al. [40] presented a novel UIE
model based on adversarial learning to handle the diversity of water
types. Jamadandi et al. [41] exploited wavelet pooling and un-pooling
to enhance degraded underwater images. Li et al. [16] presented a
fusion-based deep learning model for UIE using real-word images, the
reference image is generated from twelve enhancement methods. Islam
et al. [42] presented a real-time UIE approach based on the conditional
generative adversarial network. Fu et al. [43] combined the merits
of a traditional image enhancement technique and deep learning to
improve the quality of underwater images. Guo et al. [44] improved
the quality of underwater images by a multi-scale dense generative
adversarial network. Other relevant works of data-driven UIE methods
can be found in [45–47].

2.2. Underwater image enhancement quality assessment

Objective quality assessment for enhanced underwater images is a
fundamentally important issue in UIE. However, it has not been deeply
investigated. Researches on UIE-IQA do not keep pace with the rapid
development of recent UIE methods.

To objectively measure the quality of enhanced underwater im-
ages, Panetta et al. [21] presented a linear combination based quality
evaluation metric named UIQM, in which three individual quality
measurements are devised to evaluate the colorfulness, sharpness, and
contrast. UIQM is expressed as:

UIQM = 𝑐1 × UICM + 𝑐2 × UISM + 𝑐3 × UIConM (1)

where UICM, UISM, and UIConM are the measurements of colorfulness,
sharpness, and contrast, respectively. 𝑐1, 𝑐2 and 𝑐3 are the weight factors
ependent on the real applications. Yang et al. [22] developed an
IE-IQA metric named UCIQE that calculates the standard deviation
f chroma and the contrast of luminance in CIELab color space, and
omputes the average of saturation in HSV color space. The final quality
core is obtained by a linear combination, which can be expressed as:

CIQE = 𝑐1 × 𝜎𝑐 + 𝑐2 × 𝑐𝑜𝑛𝑙 + 𝑐3 × 𝜇𝑠 (2)

here 𝜎𝑐 is the standard deviation of chroma. 𝑐𝑜𝑛𝑙 is the contrast of
rightness. 𝜇𝑠 is the average of saturation. 𝑐1, 𝑐2 and 𝑐3 are the weight

actors dependent on the real applications. Recently, Liu et al. [2]

3

onstructed a large-scale real-world underwater image dataset to study
he image quality, color casts, and higher-level detection/classification
bility of enhanced underwater images. In literature [16], the authors
uilt a UIE benchmark dataset named UIEBD. The dataset includes
90 real-world underwater images. To obtain the potential reference
ersions of each raw image, the authors first employed twelve UIE
ethods to generate enhanced versions. Then, the reference images

f 890 original images were captured according to time-consuming
nd laborious pairwise comparisons. UIEBD provides a platform for
esigning data-driven UIE methods since it contains a lot of annotated
ata. Based on the dataset, the authors conducted a comprehensive
tudy of the state-of-the-art algorithms qualitatively and quantitatively.
ther relevant papers related to UIE-IQA can be found in [48,49].

. Proposed method

In this section, we introduce our approach to exploit rankings for
IE-IQA. We first lay out the framework of our approach and describe
ow we use a Siamese Network architecture to learn from rankings.
hen we describe the dataset built for training the ranker.

.1. Generating ranked images

To overcome the issue of lacking sufficient and effective training
ata, we formulate a simple yet reliable data augmentation approach
hat can automatically produce annotated examples. The core idea
s to simultaneously generate pair-wise virtual images whose quality
ankings are known in advance. Our method is inspired by the mixup
lgorithm [25] which constructs virtual training examples by:

�̃� = 𝜆𝑥𝑖 + (1 − 𝜆) 𝑥𝑗
�̃� = 𝜆𝑦𝑖 + (1 − 𝜆) 𝑦𝑗

(3)

here 𝑥𝑖 and 𝑥𝑗 are raw input vectors, 𝑦𝑖 and 𝑦𝑗 are labels (e.g. one-hot
ncodings for classification tasks), 𝜆 denote the mixing ratio.

Nevertheless, Eq. (3) is invalid in UIE-IQA tasks because the human
isual system is non-uniformity and non-linear in processing images.
inear interpolations of feature vectors might not lead to linear inter-
olations of the associated quality scores. Therefore, training a deep
eural network to directly estimate the quality score is impracticable
ince we cannot obtain the ground-truth of each virtual instance.

To address this problem, we develop a twice mixing strategy to
imultaneously generate pair-wise virtual examples. Concretely, we
irst randomly produce two mixing ratios before each iteration. Then
e perform the mixing module twice to produce two virtual training
xamples, as shown in Fig. 2. Mathematically, the mixed images can be
ormalized as:

�̃�1 = 𝐾1𝑥𝑖 +
(

1 −𝐾1
)

𝑥𝑗
�̃�2 = 𝐾2𝑥𝑖 +

(

1 −𝐾2
)

𝑥𝑗
(4)

here 𝑥𝑖 and 𝑥𝑗 are two input images. Without losing generality, we
uppose the quality of 𝑥𝑖 is higher than 𝑥𝑗 . 𝐾1 and 𝐾2 are mixing
atios that are randomly sampled from a uniform distribution before
ach iteration. 𝐾1 ≠ 𝐾2, and |

|

𝐾1 −𝐾2
|

|

≥ 0.1, to guarantee the visual
ifference between mixed instances. Although we are unable to obtain
he absolute quality value of each virtual instance, we can capture their
uality rankings in the light of mixing ratios. For instance, assigning
larger mixing ratio to the low-quality image result in lower quality

f the generated virtual instance. Therefore, the rankings of pair-wise
irtual examples can be calculated by:

𝑄
(

�̃�1
)

< 𝑄
(

�̃�2
)

, 𝐾1 < 𝐾2
𝑄
(

�̃�1
)

> 𝑄
(

�̃�2
)

, 𝐾1 > 𝐾2
(5)

where 𝑄 (⋅) denotes the function of image quality. We show an ex-
ample of virtual images in Fig. 3. As we can observe, the quality of
mixed images gradually improves as the mixing ratio increases, which

demonstrates the effectiveness of our approach.
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i
a

Fig. 2. Overview of the proposed UIE-IQA method. In the training phase: We randomly generate two mixing ratios before each iteration. Then pair-wise ranked images are
mplicitly synthesized and input into the network. The outputs of two branches are passed to the loss module, where we can compute the gradients based on two mixing ratios
nd apply back-propagation to update parameters of the whole network. In the testing phase: We extract a single branch from the network to predict the image quality.
Fig. 3. Examples of generated virtual instances. The visual quality of mixed images gradually improves as the mixing ratio increases.
Fig. 4. The network architecture of a single branch. We employ VGG16 [50] as the quality extractor. We adopt a Global Average Pooling (GAP) layer to adapt to different input
sizes. The output of the final layer is always a single scalar which is indicative of image quality.
3.2. Network architecture

Based on the proposed ranking data generating method, we in-
troduce a network architecture to learn image quality from pair-wise
ranked images. The whole framework of our approach is illustrated in
Fig. 2. It contains two identical network branches and a loss module.
In the training phase, the two branches are sharing weights. Pair-
wise ranked images with associated labels (i.e., the mixing ratios) are
input to the network, yielding two quality representations. Here, we
adopt a Global Average Pooling (GAP) layer after the feature extractor.
Therefore the architecture can get rid of the limitation of input size.
4

The quality representations are obtained after three fully-connected
(FC) layers. The whole network is trained end-to-end effectively with
a margin-ranking loss which will be described in the next subsection.
We use VGG16 [50] as the quality extractor that contains a series of
convolutional, ReLU, and max-pooling layers. The output of the final
layer is always a single scalar which is indicative of image quality.
The detailed network structure is illustrated in Fig. 4. In the testing
phase, we directly extract a single branch of the Siamese Network to
predict the image quality. It is worth noting that our goal is to rank
the enhanced underwater images instead of giving an absolute quality
score, and we do not apply any subjective values in the training phase.
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Fig. 5. Examples of selected high-quality and low-quality enhanced underwater images. (a) High-quality underwater images. (b) The percentage of high-quality images from the
results of different UIE algorithms. (c) Low-quality underwater images. (d) The percentage of low-quality images from the results of different UIE algorithms.
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3.3. Loss function

Different from most data-driven IQA methods that directly estab-
lish a nonlinear mapping from high-dimension feature space to low-
dimension quality score space based on the powerful modeling capa-
bilities of deep learning, we treat the quality prediction of enhanced
underwater images as a sorting problem. Thus, the loss function em-
ployed in this paper is also different from traditional IQA tasks which
address the quality evaluation as a regression issue. Specifically, we
employ margin-ranking loss [23,24] as the supervisor. Given two inputs
�̃�1 and �̃�2, the output quality scores can be denoted by:
{

𝑠1 = 𝑓
(

�̃�1; 𝜃
)

𝑠2 = 𝑓
(

�̃�2; 𝜃
) (6)

where 𝜃 refers to the network parameters. Then the margin-ranking loss
can be formulated as:

𝐿
(

𝑠1, 𝑠2; 𝛾
)

= max
(

0,
(

𝑠1 − 𝑠2
)

∗ 𝛾 + 𝜀
)

(7)

where 𝑠1 and 𝑠2 represent the estimated quality scores of �̃�1 and �̃�2,
respectively. The margin 𝜀 is used to control the distance between 𝑠1
nd 𝑠2. 𝛾 is the ranking label of the pair-wise training images. 𝛾 is
omputed by:

𝛾 = 1, 𝑄
(

�̃�1
)

< 𝑄
(

�̃�2
)

𝛾 = −1, 𝑄
(

�̃�1
)

> 𝑄
(

�̃�2
) (8)

We replace 𝑄 (⋅) in Eq. (8) with Eq. (5), and obtain:

𝛾 = 1, 𝐾1 < 𝐾2
𝛾 = −1, 𝐾1 > 𝐾2

(9)

From Eq. (7) and Eq. (9), we can observe that the loss function
tilized in this paper is only dependent on the two mixing ratios, which
re randomly generated before each iteration. Therefore, the proposed
IE-IQA method is a self-supervision based model in essence. Finally,

he 𝑛 pair-wise training images can be optimized by:

�̂� = arg min
𝜃

1
𝑛

𝑛
∑

𝑖=1
𝐿
(

𝑠(𝑖)1 , 𝑠(𝑖)2 ; 𝛾 (𝑖)
)

= arg min
𝜃

1
𝑛

𝑛
∑

𝑖=1
𝐿
(

𝑓
(

𝑥(𝑖)1 ; 𝜃
)

, 𝑓
(

𝑥(𝑖)2 ; 𝜃
)

; 𝛾 (𝑖)
)

(10)

3.4. Dataset

Benefit from our elaborated self-supervision framework, the only
subjective work for training our network is to collect high-quality (HQ)
and low-quality (LQ) enhanced underwater images. Once those images
are obtained, pair-wise ranked examples can be implicitly generated
in the training phase. To construct the dataset, we first collect 2258
real-world underwater images, which have diverse scenes, different
characteristics of quality degradation, and a broad range of image
content. Then, we select 12 typical UIE methods, including five model-
free methods (CLAHE [3], HE [26], Retinex [4], gamma correction
 c

5

(GC), and Fusion [6]), four prior-based methods (DCP [8], ULAP [51],
RED [33], and Histogram-prior [15]), and three data-driven methods
(All-in-one [40], Water-Net [16], and GLCHE [43]). We employ these
methods to generate enhanced underwater images. Then we conduct a
subjective test to select HQ and LQ images. In the subjective selection,
the original and corresponding enhanced images are simultaneously
displayed on a screen. 10 participants are invited to select the HQ
and LQ images according to five measurements, i.e., color perception,
naturalness preservation, contrast enhancement, brightness improve-
ment, and over-enhanced artifacts. The final HQ and LQ images are
captured based on the number of subjective votes. Note that, to en-
sure the quality of mixed instances span over a wide range of visual
quality (from excellent to bad), and have diverse distortion types, the
subjective selection is also according to the following rules:

(i) The quality of HQ and LQ images should be higher and lower than
corresponding original images, respectively.

(ii) The selected images should come from different UIE algorithms.
(iii) Choosing the best and the worst quality images as far as possible.

High-quality images: It is easy to select the HQ images from
ifferent enhanced results since the quality of the enhanced version
s better than the original one in most cases. Therefore, we obtain
258 HQ images. Fig. 5(a) shows an example of HQ images in our
ataset. The percentage of HQ images from the results of different UIE
lgorithms is presented in Fig. 5(b).
Low-quality images: However, LQ images are not always existing.

fter subjectively selecting, we obtain 1,815 LQ images. Examples of
ollected LQ images are shown in Fig. 5(c). We can observe that the LQ
mages have significant over-enhancement effects (e.g., serious reddish
olor shift, excessive contrast, and over-saturation). Their visual quality
s lower than the original images. We illustrate the percentage of LQ
mages from the results of different UIE methods in Fig. 5(d).

. Experimental results

We test the model performance on the synthetic dataset as well
s the real-world dataset. Next, we will first give our experimental
ettings, then we conduct several experiments to show the excellent
mprovements of our method.

.1. Experimental settings

Parameters setting. For our Siamese Network, we use VGG16 [50]
s the quality predictor, where the kernel size of all convolutional
ayers are 3 × 3 and after each convolutional layer, ReLU operation
s used as the nonlinear mapping. We set the final FC layer of VGG16
s 1. The parameter 𝜀 is set as 0.5 empirically. We use the Pytorch
ramework to train our network utilizing the Adam solver with an
nitial learning rate of 1e−6. The mini-batch size is empirically set as 1.
Training and testing datasets. We train the network on our newly
onstructed dataset. We use the first 2000 original underwater images
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Fig. 6. Underwater images in the synthetic testing dataset. The quality rankings of (a)–(e) gradually improve. Corresponding objective evaluation results are listed in Table 2.
Table 1
Performance of different methods on the synthetic database. The best results are in
bold.

Metrics Mean KRCC Std KRCC Mean SRCC Std SRCC

NIQE 0.0765 0.6474 0.0766 0.7348
BIQME 0.2164 0.8258 0.2179 0.8528
UIQM 0.1025 0.9447 0.1027 0.9530
UCIQE −0.0550 0.9119 −0.0576 0.9305
Twice Mixing 0.6718 0.5705 0.6872 0.5928

and their corresponding HQ and LQ images for training, and the rest
for testing. Note that, in the testing phase, the mixing ratio 𝐾 is fixed.
We set 𝐾 = 0, 0.2, 0.4, 0.6, 0.8, to build the synthetic testing dataset.
We also evaluate the model performance on PKU dataset [48], which
contains 100 raw underwater images. For each source image, five
UIE algorithms are applied to generate enhanced images. Subjective
rankings of enhanced images are labeled by 30 volunteers.

Compared methods. Four state-of-the-art metrics including NIQE
[17], BIQME [52], UIQM [21] and UCIQE [22] are employed for per-
formance comparisons. Among them, NIQE is the traditional NR-IQA
algorithm. BIQME is designed for enhanced images. UIQM and UCIQE
are two UIE-IQA methods. We record the results of all competitors by
conducting the same experiments using the original implementations
and pre-trained models provided by the authors. For BIQME, UIQM,
and UCIQE, a larger value indicates better image quality, while a
smaller value means better image quality for NIQE.

Performance Criteria. We use Kendall Rank Correlation Coefficient
(KRCC) [53] and Spearman Rank Correlation Coefficient (SRCC) [17]
to assess the model’s performance. Formally, KRCC is defined as:

KRCC =
𝑛𝑐 − 𝑛𝑑

0.5𝑛 (𝑛 − 1)
(11)

here 𝑛 is the ranking length. 𝑛𝑐 and 𝑛𝑑 are the number of concordant
nd discordant pairs, respectively. SRCC is defined as:

RCC = 1 −
6
∑

𝑑2𝑖
𝑛
(

𝑛2 − 1
) (12)

where 𝑛 is the ranking length. 𝑑𝑖 denotes the difference in rankings of
he element 𝑖. A better objective UIE-IQA measure is expected to get
igher SRCC and KRCC.
6

4.2. Performance comparisons on synthetic data

In this subsection, we verify the model performance on our newly
built synthetic testing dataset, in which the ground-truth is automat-
ically labeled according to the mixing ratio. Table 1 summarizes the
comparison results of mean and standard deviation (std) KRCC and
SRCC values. From the table, we can observe that the proposed method
is significantly better than the other four metrics. Traditional NR-IQA
metric NIQE shows unsatisfactory performance because it is developed
for terrestrial images and it do not take the specific distortions of UIE
into account. Compared with BIQME and two UIE-IQA methods, our
approach utilizes the powerful modeling capabilities of deep learning
to automatically learn representative features from pair-wise samples,
without manually designing specific low-level quality relevant features.
Therefore, the proposed approach achieves better performance. Fur-
ther, we provide an example to show the capability of different UIE-IQA
metrics in predicting quality values.

We test four groups of enhanced underwater images as shown in
Fig. 6. The first and second groups have over-enhancement appear-
ances, while the examples in the third and fourth lines are under-
enhancement. We report the evaluation results in Table 2. From Fig. 6
and Table 2, we can make the following observations:

(i) BIQME, UIQM, and UCIQE cannot accurately estimate the quality
of over-enhanced images. Their results are even worse than the
traditional NR-IQA method NIQE in this case. Especially for UIQM
and BIQME, the reddish results consistently exhibit the highest
quality scores. We consider the reason may lie in that BIQME,
UIQM and UCIQE are designed based on hand-crafted low-level
features with a shallow pooling strategy, which will limit their
performance and generalization abilities.

(ii) Since the quality degradations between enhanced underwater im-
ages and terrestrial images are quite different. Directly applying
traditional NR-IQA metrics cannot achieve satisfactory results. As
reported in Table 2, NIQE fails to predict the quality of under-
enhanced images, while the estimations of other metrics are
relatively accurate.

(iii) Compared with the four competitors, our results are highly consis-
tent with subjective rankings. This is benefits from the proposed
dataset that contains both high-quality and low-quality enhanced
underwater images, and the elaborate formulated twice mixing
strategy. Instead of manually designing features, Twice Mixing
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Table 2
Evaluation results of underwater images in Fig. 6. Here, GT denotes the ground-truth ranking.

Metrics First line Second line

(a) (b) (c) (d) (e) KRCC (a) (b) (c) (d) (e) KRCC

NIQE 2.0907 2.1450 2.1061 2.1315 2.1015 0 3.2759 3.2685 3.2336 3.0810 3.0405 1
BIQME 0.6361 0.6266 0.6183 0.6136 0.6068 −1 0.6542 0.6459 0.6396 0.6293 0.6198 −1
UIQM 5.5322 5.1214 4.6711 4.1289 3.6437 −1 4.0162 3.7113 3.3451 2.8354 2.2806 −1
UCIQE 33.206 33.293 33.465 33.424 33.219 0.2 33.470 32.592 32.566 32.979 33.404 0
Twice Mixing 0.8917 1.0074 1.1357 1.2870 1.3255 1 0.5726 0.6899 0.8295 0.9459 0.9766 1
GT 1 2 3 4 5 1 1 2 3 4 5 1

Metrics Third line Fourth line

(a) (b) (c) (d) (e) KRCC (a) (b) (c) (d) (e) KRCC

NIQE 3.0878 3.0809 3.0626 3.1264 3.1818 −0.4 3.7144 3.8490 3.8205 3.2228 3.3172 0.4
BIQME 0.4677 0.4792 0.4862 0.5051 0.5238 1 0.6061 0.6054 0.6060 0.6109 0.6195 0.6
UIQM 1.6375 2.0534 2.5076 3.0093 3.4110 1 0.2399 0.8361 1.2167 1.7660 2.0508 1
UCIQE 22.246 24.303 26.326 30.604 32.477 1 28.511 29.170 29.856 30.663 31.726 1
Twice Mixing 0.9771 1.1423 1.2865 1.3871 1.4790 1 0.4713 0.5198 0.6207 0.7143 0.7568 1
GT 1 2 3 4 5 1 1 2 3 4 5 1
𝐾
o
S
m
B
d
e

5

b

Table 3
Performance of different methods on the PKU database. The best results are in bold.

Metrics Mean KRCC Std KRCC Mean SRCC Std SRCC

NIQE 0.0920 0.4675 0.0840 0.5583
BIQME 0.3240 0.4048 0.3580 0.5192
UIQM −0.5240 0.4356 −0.6060 0.4799
UCIQE 0.3800 0.3222 0.4620 0.3757
Twice Mixing 0.5920 0.3662 0.6707 0.3971

adopts a Siamese Network to learn the pair-wise comparison
with a margin-ranking loss. As a result, the proposed model can
automatically dig discriminative features that are more relevant
to the image quality.

.3. Performance comparisons on PKU dataset

The Holy Grail we pursue is to design a generic UIE-IQA metric
hat can predict enhanced underwater image quality robustly and accu-
ately. Therefore, we further conduct experiments on the PKU dataset
o show the model performance for real-world UIE outputs. PKU dataset
s constructed in [48]. It contains 100 original underwater images and
00 enhanced versions generated by five UIE algorithms. Subjective
ankings are obtained via a well-designed user study. Table 3 gives
he results of the comparisons. As shown in the table, our method
chieves the best performance. We note that UIQM acquires a high
egative correlation with subjective rankings. This is because UIQM
avors the outputs with over-enhancement effects. As expected, NIQE
btains poor results since it is designed for terrestrial images with
pecific distortions.

To intuitively show the performance of each method, Table 4 gives
n example of quality estimation for enhanced underwater images
resented in Fig. 7. We can make the following observations from Fig. 7
nd Table 4:

(i) BIQME, UIQM, and UCIQE have their preferences for UIE-IQA
tasks. Their results are not always subjectively correct. For ex-
ample, BIQME fails to accurately measure the color distortion,
e.g., it gives a high quality score for (a) and (d) in the third
line. UIE algorithms tend to produce excessive redness due to
over-enhancement, resulting in extremely high UIQM scores. Un-
fortunately, these results are visually unfriendly according to
human visual perceptions. For UCIQE, it also tends to produce
high quality values for reddish results. Meanwhile, UCIQE favors
the outputs with high contrasts, e.g., the enhanced instances of
(d) in the third and fourth lines, and (c) in the second line.

(ii) Similar to the evaluation results on our synthetic testing dataset,
NIQE cannot handle the UIE-IQA task well. As illustrated in
Fig. 7, the degradations of enhanced underwater images are
 c
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mainly caused by the color cast, contrast distortions, naturalness,
and so on, which is significantly different from the distortions
in the traditional IQA community. Therefore, directly adopting
traditional IQA metrics may fail to capture the desired results.

(iii) All the competitors use hand-crafted low-level features for quality
evaluation, their performance is highly dependent on the de-
signer’s experience and the effectiveness of quality pooling strate-
gies. For example, UIQM and UCIQE should carefully balance
each quality component that is manually extracted. Benefiting
from the powerful modeling capabilities of deep neural networks
and the elaborately designed self-supervision mechanism, the
proposed method can automatically and effectively learn the
intricate relationship between enhanced underwater images and
their subjective quality rankings from massive training data. As a
result, the proposed method achieves better evaluation accuracy
and generalizations.

(iv) Although Twice Mixing achieves state-of-the-art performance,
there are still false estimates (e.g., third and fourth lines). We
consider that UIE-IQA is a challenging task, which needs to
comprehensively assess diverse distortions. Therefore, the devel-
opment of an appropriate UIE-IQA metric is still an open issue in
this field, and there is still much room for the improvement of
UIE-IQA.

4.4. Impact of the mixing ratios

Since the core idea of our method is to apply random mixing ratios
to generate pair-wise training data and guide the network training, it is
necessary to conduct experiments under different settings to understand
how the mixing ratio affects the performance. In this paper, we have
tried two variations over the original approach, these are: without
using the mixing strategy (Setting A) and using fixed mixing ratios
(Setting B).

Table 5 reports the test results. Note that, we set 𝐾1 = 0, 0.5, 1, and
2 = 0, 0.5, 1 in Setting B, where (𝐾1 ≠ 𝐾2). From Table 5, we can
bserve that Setting B and Twice Mixing are significantly better than
etting A, which demonstrates that the mixing strategy can improve the
odel generalization performance for UIE-IQA. Compared with Setting
, Twice Mixing uses random mixing ratios and can generate more
egradation types and levels in between two samples. Therefore, the
valuation results are more accurate.

. Conclusion

In this paper, we propose a rank learning framework for UIE-IQA
ased on an elaborately formulated self-supervision mechanism. The

ore idea is to randomly generate two mixing ratios, which are utilized
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Fig. 7. Underwater images in the PKU dataset. The quality rankings of (a)–(e) gradually deteriorate. Corresponding objective evaluation results are listed in Table 4.
Table 4
Evaluation results of underwater images in Fig. 7. Here, GT denotes the ground-truth ranking.

Metrics First line Second line

(a) (b) (c) (d) (e) KRCC (a) (b) (c) (d) (e) KRCC

NIQE 4.5148 6.2774 7.7976 5.2964 5.5633 0.2 3.3247 2.5724 4.0111 2.6841 2.7832 0
BIQME 0.5475 0.3221 0.5642 0.5127 0.4327 0.2 0.5708 0.6249 0.5904 0.5969 0.5371 0.2
UIQM 2.2369 −0.2278 −2.5231 3.3535 3.8102 −0.4 0.7315 0.4252 1.2921 2.1434 3.5726 −0.8
UCIQE 31.932 29.084 16.375 28.355 24.286 0.6 36.317 33.492 37.694 31.957 33.198 0.4
Twice Mixing 0.5834 0.3471 0.2425 −0.2008 −0.4575 1 1.8558 1.7431 1.4316 1.3137 0.6898 1
GT 5 4 3 2 1 1 5 4 3 2 1 1

Metrics Third line Fourth line

(a) (b) (c) (d) (e) KRCC (a) (b) (c) (d) (e) KRCC

NIQE 3.9804 4.2074 4.2075 3.6032 4.1573 0 2.5766 3.0362 2.9796 3.2380 3.0023 0.4
BIQME 0.6407 0.5702 0.4386 0.6576 0.6111 0 0.6170 0.6186 0.5602 0.5684 0.5193 0.6
UIQM 4.2602 4.1195 3.6208 0.0081 0.7238 0.8 1.2348 1.3499 2.7651 4.9258 4.0820 −0.8
UCIQE 34.218 30.840 22.756 31.296 21.267 0.6 31.647 32.223 29.765 37.490 28.655 0.2
Twice Mixing 1.9827 1.3385 0.7734 1.1111 0.6405 0.8 3.1275 3.7372 2.9139 2.3859 2.0343 0.8
GT 5 4 3 2 1 1 5 4 3 2 1 1
Table 5
Impact of the mixing ratios.

Dataset Criteria Setting A Setting B Twice Mixing

PKU

Mean KRCC 0.4140 0.4540 0.5920
Std KRCC 0.4323 0.4356 0.3662
Mean SRCC 0.5120 0.5490 0.6707
Std SRCC 0.4883 0.4877 0.3971

for both generating training examples and corresponding rankings. Un-
like typical mixup algorithms that calculate the annotations of virtual
instances via a linear combination, by considering that the human
visual system is non-uniformity and non-linear in processing images, we
propose to compute quality rankings of two virtual instances according
to the random mixing ratios. Therefore, we train a Siamese Network
to learn the pair-wise comparison with a margin-ranking loss. To train
our network, we construct a dataset with over 2200 raw underwater
images and their high-quality and low-quality enhanced versions. The
8

performance of our metric is extensively verified by several elabo-
rately designed experiments, on both synthetic and real-world UIE-IQA
datasets. Experimental results show that the proposed method obtains
superior performance compared to existing UIE-IQA techniques. The
prediction results are in line with subjective judgments. In future works,
we will focus on digging prior knowledge for quality representation
and concentrating on accurate quality pooling. Also, we plan to design
specific UIE algorithms under the guidance of UIE-IQA methods.
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